If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9m^2+51m+70=0
a = 9; b = 51; c = +70;
Δ = b2-4ac
Δ = 512-4·9·70
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-9}{2*9}=\frac{-60}{18} =-3+1/3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+9}{2*9}=\frac{-42}{18} =-2+1/3 $
| 1/3(4x-1)+2/5(2x+5)-514/15=0 | | -z/4=-8 | | s+-10=-4 | | -a/3=12 | | 30=k-23 | | 38x^2-67x+15=0 | | 18+y=-4 | | 9x31x-10=10(4x+5) | | u+6=-3 | | 7y+33=6y-18 | | 5-2(x-3)=-21 | | (D^2-3D-4)y=0 | | (5x-4)^2=(5x-4)(5x+4)+10x-30 | | 36=8-7w | | 10-7x=-3x-2 | | 4x-8-3x+4=12 | | (5x-4)2=(5x-4)(5x+4)+10x-30 | | 5x+8=8x-1I | | x-11=2(8+2x) | | (D^2+6D+9)y=0 | | h-(-41)/8=9 | | 1/3x2-40=-13 | | 4^x+1=5^2x | | 10-6s=-7s | | 4x2-2=34 | | 23-3x=2 | | 5x2=245 | | 2x-9x=-28+10 | | 29=9x+2 | | 5x-1/3=6/x= | | 29=9x=2 | | -38=x/8+-45 |